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A Comparative Study of Two Statistical
Models for the Analysis of Binary Data
from Longitudinal Studies

by Hideki Origasa* and James D. Knoket

This study extensively compares two statistical models for the analysis of binary data from longitudinal
studies. The first model was proposed by Zeger, Liang, and Self, which was abbreviated as ZLS model and
another model was proposed by Origasa. The comparison focuses on both analytical and statistical view-
points. The first discusses a type of the models and the second evaluates the effect from model misspecifica-
tion by simulation, assuming that the ZLS model is true.

Introduction
A study in health sciences frequently uses a design

involving a time factor. Data are collected at multiple
occasions with respect to each subject. They may be
referred to as longitudinal data or repeated measures.
Such data can be produced by both retrospective and
prospective studies. Survival data are usually excluded
from them because they cannot involve recurrent events
(1). Thus, a longitudinal study may be defined as one in
which data are collected on several occasions, regardless
of the direction and type of study.
The longitudinal study provides several advantages

over the cross-sectional study. For example, it increases
the precision of treatment contrasts by eliminating
within-individual variation and enables us to examine
the individual's changing response pattern over time.
Time series technique may be a solution for analysis

of such dependent observations. However, it is only
effective for studies with a large number of occasions.
A study in health sciences often involves relatively small
number of occasions, say two to six. In most of the
clinical trials conducted by Japanese pharmaceutical
companies, data are collected on a few occasions after
randomization. Also, from the viewpoint of modeling,
the data need to include some covariates such as base-
line risk factors into the model.

Literature Review
Three approaches are possible for analyzing binary

longitudinal data. The first is modeling for marginal
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probabilities; the second is modeling for transition (or
conditional) probabilities; and the last is nonparametric,
i.e., not a model-based approach.
With respect to the first type of modeling, GSK (Griz-

zle, Starmer, and Koch) linear model (2) is fairly gen-
eral. It can be applied to longitudinal data (3). Suppose
there are T occasions with binary responses. Then,
there are 2T profiles that each individual corresponds
to. On can express any function generated from the
vector of proffles. Another function is shown by Liang
and Zeger (4) which uses the generalized linear model
(5). The within-individual covariance matrix is included
in the model. This model allows us to deal with a mixture
of discrete and continuous variables.
Modeling for transition probabilities has been pro-

posed by many authors. Again, the GSK approach is
applicable for them. The Markov chain model can also
be applied. Muentz and Rubinstein (6) has shown a lo-
gistic expression for those. The last two, i.e., ZLS (7)
model and Markov logistic regression model (8) will be
described in another section.
By rearranging data into T consecutive 2 x 2 tables

(Table 1), several authors have proposed different sta-
tistics to test for treatment effect (8-10). An underlying
model is T-fold product binomial (11) with Markov prop-
erty.

Table 1. Rearranged 2 x 2 consecutive tables from longitudinal
binary data.

Time 1 Time T
Group Yes No Total Yes No Total
Drug a, bi N12 aT bT N12
Control cl di N12 CT dT N12
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ZLS Model
The ZLS model is formulated as the following two

stages. The first one is expressed as:

logit (Pi,) = log {pi1/(l - PiJ)} = Zi 8,
at the initial occasion Zi is a q x 1 vector of time-
independent covariates and 8 is a vector of associated
parameters. The second stage expresses the stationary
first-order autoregressive, that is,

Pit = pi, + p (Yi,t- - Pil), t _ 2
where p is the autocorrelation coefficient.
Time course is simply determined by the most recent

outcome, autocorrelation coefficient, and the initial
probability so that no covariates are related to changing
probabilities of having a symptom over time. Statistical
inference can be performed using the likelihood, that
is,

L = [pyil(l - pi,)i-Yil {FIpYit (1 - Pit)l-Yit}1

which is called the unconditional likelihood because it
summarizes the entire data.

Markov Logistic Regression Model
(MLRM)

This model comes from a small modification of the
ordinary logistic regression model to incorporate the
covariate of previous outcome. It approximately cor-
responds to a covariance structure of the first-order
autoregressive process. It allows us to use data much
more efficiently than the multivariate approach, such as
the one proposed by Grizzle and Allen (12). The principle
is that adjacent nonmissing pairs can be used. The model
is expressed as:

logit (Pit) = a + Yit-1 + Xi' y + Zj'I
where the Pit is the conditional probability of having a
response at time t (t = 1, . . . ,T) for the ith individual,
given the past observation (yi,t- ) and the covariates
(Xilt, Zi).
Although the principle models transition probabili-

ties, it exactly corresponds to the modeling for marginal
probabilities denoting pij(i,j = 0 or 1) to be transition
probabilities and nTij(i,j = 0 or 1) to be marginal prob-
abilities. Define

Pol = Pr{Y2 = 1 yl = 0}, pOO = 1 - Poi,

Pii = Pr{Y2 = 1 yl = 1}, P1o = 1 - Pll,

IT01 = [1 - Pr{Yl = 1}] X Poi,

ITOO = [1 - Pr{Yl = 1}] x Poo,

IT11 = Pr{Yl = 1} x Pil,

IT10 = Pr{Yl = 1} X Plo

in which the first and second occasions are concerned.
Consider the MLRM without covariates, that is,

logit (Pit) = a + 1 Yi,t-
In other expressions,

log {Pol/Poo} = at, log {Pll/Plo} = a + a
depending on the realization of previous outcome. From
a simple algebra, we obtain

log {'rrOl/OO} = a, log {1T11/oT10} = a + a

which has an equivalent form to the above.

Comparisons
Suppose that there are no time-dependent covariates.

The MLRM turns out to be:
logit (Pit) = 1 yi,t- + Z5

or explicitly

Pit = exp(1 yi,t-l + Z'i)/{1 + exp(13 Yi,t-l + Zib)}
The ZLS model is, on the other hand, expressed as:

pi= exp (Zi8*)/{1 + exp (Z`i8*)}
and

Pit= pi + p (yi,t-l - Pil), t 3 2,
where the parameter 8* is generally different from B.
Although the transition of responses is only varied by
a constant autocorrelation parameter (p) for the ZLS
model, it is a complex expression for the MLRM as:
p = [exp(pyi,t-l + ZL5)I{1 + exp(pyi,t-l + Zi2)}

- Pil]/lYit-l -Pil]-
A plausible expression for the relative risk from a

previous outcome might be different between two
models. It might be useful for the ZLS model to express
it as an additive form, so that

RZLS = Pr{yit = 1 | yi,t- = 1}
-Pr{yit = Yi,t-= O} = p

If a past observation is unrelated to the present one,
then the relative risk should be zero which corresponds
to p = 0. A relative risk for the MLRM might be usefully
expressed as a multiplicative form as:

Pr{yit1 1 yi,t-= 1}
RMLRM - Pr{yit = 1 Yi,t- °}

e1 + exp(Z'b + 1
1 + exp(Zib + 1

The null value of relative risk is 1 when 1 = 0, which
means there is no effect from the previous outcome.

Simulation Study
The purpose of conducting a simulation study is to

evaluate the robustness of the MLRM from the view-
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Table 2. Effects of the model misspecification on the estimate, variance, and goodness of fit (a = 0, p = 0.0, c = 0.0).

Empirical estimate Empirical variance
N T a p c a p c Maximum log-likelihood
ZLS model
30 3 0.002 - 0.046 - 0.010 0.056 0.030 0.062 - 39.8
30 6 0.009 - 0.015 - 0.010 0.024 0.008 0.025 - 102.5
60 3 0.008 - 0.013 - 0.011 0.024 0.010 0.026 - 81.8
60 6 0.002 - 0.007 - 0.003 0.011 0.003 0.011 - 206.7

a 3 oy a 13
MLRM
30 3 0.050 - 0.085 0.006 0.052 0.116 0.028 - 40.0
30 6 0.030 - 0.050 - 0.009 0.065 0.142 0.036 - 102.5
60 3 0.029 - 0.031 - 0.009 0.154 0.320 0.083 - 81.7
60 6 0.016 - 0.028 - 0.004 0.027 0.053 0.013 - 206.5

Table 3. Effects of the model misspecification on the estimate, variance, and goodness of fit (a = 0, p = 0.0, c = 0.3).

Empirical estimate Empirical variance
N T a p c a p c Maximum log-likelihood
ZLS model
30 3 0.009 - 0.034 0.304 0.050 0.023 0.057 - 39.4
30 6 0.017 - 0.017 0.296 0.025 0.009 0.024 - 100.8
60 3 0.015 - 0.019 0.298 0.028 0.013 0.026 - 80.3
60 6 0.006 - 0.007 0.299 0.013 0.004 0.011 - 203.3

a 1 'y a 3y
MLRM
30 3 0.054 - 0.076 0.330 0.148 0.316 0.088 - 39.4
30 6 0.041 - 0.058 0.301 0.057 0.128 0.028 - 100.9
60 3 0.044 - 0.043 0.303 0.069 0.152 0.034 - 80.4
60 6 0.020 - 0.029 0.301 0.029 0.058 0.013 - 203.2

Table 4. Effects of the model misspecification on the estimate, variance, and goodness of fit (a = 0, p = 0.2, c = 0.0).

Empirical estimate Empirical variance
N T a p c a p c Maximum log-likelihood
ZLS model
30 3 0.007 0.175 - 0.007 0.061 0.019 0.060 - 39.2
30 6 0.019 0.187 - 0.010 0.031 0.007 0.034 - 99.6
60 3 0.011 0.189 - 0.010 0.029 0.009 0.029 - 79.6
60 6 0.006 0.194 - 0.005 0.014 0.003 0.016 - 200.7

a 3 Ry a 3y
MLRM
30 3 - 0.384 0.795 0.009 0.161 0.332 0.083 - 38.8
30 6 - 0.377 0.776 - 0.009 0.058 0.128 0.030 - 99.4
60 3 - 0.386 0.801 - 0.009 0.072 0.150 0.038 - 79.2
60 6 - 0.390 0.793 - 0.006 0.028 0.060 0.014 - 200.5

point of model misspecification. The focus is on the de-
gree of similarity between two models with respect to
the goodness of fit, conservativeness, and power of the
likelihood ratio test, provided that ZLS model is true.
The final maximum log-likelihood is used for the index
of goodness of fit since the likelihood based inference is
used for both models and they have an equal number
of parameters. The degrees of conservativeness and
power of the likelihood ratio tests are compared be-
tween two models under four different tails (i.e., 1, 5,
10, and 20%).
The maximum likelihood estimation is performed us-

ing the quasi-Newton method (13), and the binary ob-
servations are created by the acceptance-rejection
method based on the uniformly distributed random
number generator, the number of replications is 500.
The number of sample sizes to be considered is 4, de-
pending on both the number of subjects and the number
of occasions.
The true ZLS model is:

logit (pi,) = a + c TRTi,
Pit = pi, + p (yi,t-1 - pi), t - 2

where TRTi has a value of 1 for the control and -1 for
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Table 5. Effects of the model misspecification on the estimate, variance, and goodness of fit (a = 0, p = 0.2, c = 0.3).

Empirical estimate Empirical variance
N T a p c a p c Maximum log-likelihood
ZLS model
30 3 0.015 0.167 0.299 0.060 0.018 0.063 - 38.6
30 6 0.018 0.182 0.289 0.033 0.007 0.034 - 98.3
60 3 0.014 0.186 0.287 0.029 0.008 0.031 - 78.6
60 6 0.013 0.191 0.297 0.014 0.003 0.016 - 197.7

t a,(3y a ay
MLRM
30 3 - 0.369 0.772 0.191 0.174 0.328 0.095 - 38.2
30 6 - 0.370 0.765 0.245 0.058 0.123 0.031 - 98.1
60 3 - 0.378 0.799 0.242 0.073 0.152 0.039 - 78.1
60 6 - 0.385 0.792 0.247 0.028 0.058 0.014 - 197.5

Table 6. Effects of the model misspecification on the
significance results (a = 0, p = 0.0, c = 0.0).

Type I error
Empirical LR power of p Empirical LR power of (3

Table 7. Effects of the model misspecification on the
significance results (a = 0, p = 0.0, c = 0.3).

Type I error
Empirical LR power of p Empirical LR power of ,3

N T 1% 5% 10% 20%
Autocorrelation effect

30 3 8.4 11.2 14.8 24.0
30 6 1.8 6.4 11.4 24.2
60 3 2.0 5.6 11.4 21.6
60 6 1.2 5.4 11.0 20.0

1% 5% 10% 20%

1.4 5.4 11.6 22.8
0.8 5.6 11.2 23.8
0.8 5.2 10.0 20.4
1.2 5.4 10.8 20.0

N T 1% 5% 10% 20%
Autocorrelation effect

30 3 5.8 9.6 13.8 22.6
30 6 2.0 7.4 13.8 23.2
60 3 3.2 7.2 12.4 22.2
60 6 1.4 5.6 12.0 21.6

1% 5% 10% 20%

1.0 6.0 11.0 21.4
0.6 6.6 14.0 23.6
0.4 5.4 12.8 21.4
1.2 5.6 12.0 21.2

Empirical LR power of c Empirical LR power of y

Treatment effect
30 3 6.6 11.0 14.8 22.6
30 6 2.8 7.4 11.0 18.0
60 3 3.0 6.8 11.0 18.2
60 6 1.0 4.6 10.8 20.0

1.2 6.8 12.4 22.4
1.2 5.8 11.0 18.4
1.2 5.4 11.2 21.8
1.2 5.0 9.0 19.0

Empirical LR power of c Empirical LR power of y

Treatment effect
30 3 16.2 25.4 41.8 57.0 8.8 22.0 32.0 49.6
30 6 24.2 50.0 63.0 74.0 19.0 43.8 56.4 67.6
60 3 24.4 50.0 63.0 73.8 16.0 36.4 49.8 63.2
60 6 59.0 82.2 90.0 95.4 48.0 73.6 83.8 92.2

Table 8. Effects of the model misspecification on the
significance results (a = 0, p = 0.2, c = 0.0).

Type I error
Empirical LR power of p Empirical LR power of (3

N T 1% 5% 10% 20% 1% 5% 10% 20%
Autocorrelation effect

30 3 13.6 29.8 42.2 57.2 13.4 29.4 43.2 60.6
30 6 40.4 62.0 74.4 83.0 40.0 61.8 74.6 83.6
60 3 29.6 53.8 67.4 80.6 31.0 56.4 70.4 81.4
60 6 76.8 91.8 96.0 98.0 77.0 91.8 96.0 98.0

Empirical LR power of c Empirical LR power of y

Treatment effect
30 3 1.8 6.0 11.2 19.0 1.6 5.4 10.6 22.2
30 6 1.2 5.4 10.8 21.0 1.0 5.6 11.0 20.0
60 3 1.0 5.2 10.0 20.2 0.6 5.8 9.8 20.8
60 6 1.4 5.4 10.4 19.4 1.4 5.2 9.2 19.4

Table 9. Effects of the model misspecification on the
significance results (a = 0, p = 0.2, c = 0.3).a

Type I error
Empirical LR power of p Empirical LR power of 3

N T 1% 5% 10% 20%
Autocorrelation effect
30 3 10.2 25.6 38.8 53.6
30 6 36.2 63.4 73.6 83.0
60 3 29.2 57.0 66.6 77.8
60 6 75.4 91.8 95.2 98.4

1% 5% 10% 20%

12.2 27.4 39.2 54.0
36.4 63.2 73.6 82.8
30.4 58.8 67.4 78.8
75.6 92.0 95.2 98.4

Empirical LR power of c Empirical LR power of -y

MLRM
30 3 10.2 23.6 33.8 47.8
30 6 17.4 36.8 48.0 59.6
60 3 18.2 38.6 52.2 65.4
60 6 39.8 67.4 77.0 87.4
a Longitudinal binary data analysis.

6.0 18.6 27.4 44.0
13.0 28.8 39.4 55.6
11.6 24.8 35.2 48.0
28.2 53.8 68.6 79.8

the drug group. Parameters are selected from a com-
bination of the following:

a = O., c = 0.0, or 0.3, p = 0.0, or 0.2,
N =30, or 60, and T = 3, or 6.

Generated data are fitted to the MLRM:
logit (pit) = a + 1 Yi,t-, + -y TRTi.

Results of the simulation experiments are: two
models are almost equally fitted even though data are
generated by the ZLS model, more accurate Type I
error rates are achieved in the misspecified MLRM,
especially for either smaller sample sizes or smaller tail
probabilities, power of testing the autocorrelation (p for
ZLS, 1 for MLRM) is similar. However, the power of
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testing the treatment effect is a bit less powerful under
the misspecified model (MLRM) although it is ignorable
for moderately large sample sizes. (For details, see Ta-
bles 2-5 for goodness of fit results, and Tables 6-9 for
hypothesis testing results.)

Conclusions
With respect to the comparison between the MLRM

and ZLS model, the five features (generalizability, in-
terpretability, dealing with incomplete data, software
availability, and computability) are considered. The
MLRM is preferable in terms of the generalizability and
software availability. The effect of model misspecifica-
tion from ZLS model is ignorable both for conserva-
tiveness and for power of the test.
Future research areas are multiple. First, one must

explore a more effective model whose characteristics
might be interpretability, generalizability, and more fit.
Second, one needs to develop a methodology to allow a
study with information missing by design and seek for
the relative efficiency. The third may be the develop-
ment of a model that allows a variable with multiple
responses. Finally, a more efficient algorithm for sta-
tistical inference and its related computer softwares
should be developed after performing more extensive
comparative studies among the previous models.
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